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Abstract. A general formalism of the so-called non-adiabatic quantum molecular dynamics is presented,
which applies to atomic many-body systems in external laser fields. The theory treats the nuclear dynamics
and electronic transitions simultaneously and self-consistently in a mixed classical-quantum approach. The
equations of motion are derived from a general action principle by combining time-dependent density
functional theory in basis-set-expansion with classical molecular dynamics. Structure and properties of the
resulting equations of motion as well as the energy and momentum balance equations in this formalism
are discussed in detail. For the model system H+

2 , the classical-quantum equations of motion are solved.
The results agree very well with that of full quantum mechanical calculations. Moreover, from the present
calculation a transparent physical interpretation of the mechanisms of energy absorption and dissociation
dynamics can be obtained. Future applications and approximations of the formalism presented here are
briefly outlined.

PACS. 36.40.-c Atomic and molecular clusters – 31.15.Ew Density-functional theory – 34.50.Gb Electronic
excitation and ionization of molecules; intermediate molecular states (including lifetimes, state mixing, etc.)

1 Introduction

The non-adiabatic dynamics of electronic and nuclear de-
grees of freedom in atomic many-body systems represents
one of the fundamental processes in different areas of
physics and chemistry.

Experimentally, exceptional large progress has been
made during the last decade in studying non-adiabatic
processes, in particular in molecules and atomic clusters.
So, experiments with intense femto-second laser pulses in-
teracting with molecules [1] or atomic clusters [2–8] have
revealed a variety of fascinating new, typical non-adiabatic
phenomena like the production of keV electrons [2], MeV
ions [3] and intense X-rays [4]; the Coulomb explosion [5]
connected even with nuclear fusion [6]; the multiple plas-
mon excitation and relaxation in metallic clusters [7], or
the unexpected enhanced ionization with decreasing laser
intensity [8]. Moreover, pump-probe experiments allow
now to investigate the time-resolved non-adiabatic dy-
namics, e.g. of photoinduced isomerization processes (for a
review see [9]). Finally, refined scattering experiments in-
volving metal clusters [10] and fullerenes [11] revealed de-
tailed insight into electronic and vibronic excitation mech-
anisms, as well as their coupling and related fragmentation
processes in those complex systems.
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Theoretically, the non-adiabatic coupling of electronic
and nuclear dynamics is one of the most challenging
problems of atomic many-body theory and, in principle,
requires the solution of the full time-dependent electron-
nuclear Schrödinger equation. At present, however, a full-
scale numerical solution is barely feasible for the smallest
possible molecular system, the H+

2 molecule [12]. Thus,
for larger systems like atomic clusters, phenomenologi-
cal models, based on classical mechanics and/or hydro-
dynamics [13–18] have been developed to investigate the
mechanism of the intense laser-cluster interaction. More
microscopic approaches are based on electronic time-
dependent Thomas-Fermi theory [19–21] or related semi-
classical (meanfield) approximations [22,23] coupled with
molecular dynamics (MD) for the nuclear motion. The
most advanced microscopic theory to study the coupled
electronic and ionic dynamics in intense laser-cluster in-
teraction developed so far, is based on time-dependent
(TD) density functional theory (DFT) in local density
approximation (LDA) for the treatment of the electronic
system coupled with classical MD for the nuclear (ionic)
dynamics [24,25]. In this approach, the TD-Kohn-Sham
equations are numerically solved on a grid with the conse-
quence that full 3D calculations [24] are still on the edge
of available computational facilities. Therefore, the upper
most applications of this theory have been obtained within
an effective two-dimensional approximation [25] (see [26]
for a review).
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An alternative fully microscopic approach to the nona-
diabatic dynamics in atomic many-body systems is the
so-called nonadiabatic quantum molecular dynamics (NA-
QMD), developed recently [27]. In this method, electronic
and vibrational degrees of freedom are treated simulta-
neously and self-consistently by combining classical MD
with TD-DFT in a finite basis set expansion of the Kohn-
Sham-orbitals. The formalism [27] has been worked out
for conservative systems, in particular to investigate adia-
batic and non-adiabatic collisions involving molecules and
atomic clusters.

The NA-QMD theory has been successfully applied
so far for the description and interpretation of fragment
correlations in collision-induced dissociation [28], charge
transfer cross-sections [29–31], as well as the excitation
and fragmentation processes in collisions of atoms (ions)
with small sodium clusters [32] and systems as large as
fullerenes [33].

In this work, we present a general NA-QMD formalism
suitable to describe also the interaction of large, but still
finite atomic many-body systems with external laser fields.
Whereas in previous work [27] approximate classical forces
taken from energy conservation have been used, here we
present a rigorous derivation of generalized forces from the
action principle.

In order to make this paper self-contained, we derive
and discuss the equations of motion in a systematic way,
starting from a general mixed classical-quantum action
principle (Sect. 2.1), specified then for an atomic many
body system (Sect. 2.2) and formulated finally in TD-DFT
without basis set expansion for the Kohn-Sham-orbitals
(Sect. 2.3). The central equations of motion of the present
general NA-QMD formalism, however, are derived by us-
ing a finite basis set expansion for the Kohn-Sham-orbitals
(Sect. 2.4). Their general properties, in particular that of
the resulting force corrections, including their physical in-
terpretation in terms of classical mechanics, are discussed
in detail, too (Sect. 2.5). In addition, the energy (Sect. 2.6)
and momentum (Sect. 2.7) balance equations in this basis
set formalism are derived.

For the model system H+
2 , all equations of motion are

solved without any further assumptions or approximations
(Sect. 3). The results of these calculations are in reason-
able, and to some extend quantitative, agreement with
full quantum mechanical calculations [12]. Moreover the
present treatment allows to obtain a very transparent in-
terpretation of the excitation and fragmentation mecha-
nisms in this fundamental atomic system.

Future applications of the formalism to larger systems
are briefly outlined.

2 Theory

2.1 General mixed classical-quantum treatment

We consider first the general case of a mixed classical-
quantum system consisting of interacting particles [34].
The Ni classical particles are described by their trajec-
tories R ≡ {R1(t), . . . ,RNi(t)}. They are determined by

an explicit time-dependent potential U(R, t) as well as
the interaction with a system of Ne quantum-mechanical
particles, described by their many-body wave function
Ψ = Ψ(r1, . . . , rNe , t) (We omit the spin index). This is
determined by an explicit time-dependent Hamiltonian
Ĥ(R, t) which on its part depends parametrically on R.
The action of such a system consists of a classical and a
quantum part

A = Ac + Aq (1)

with

Ac =

t1∫

t0

{
Ni∑
A

MA

2
Ṙ2

A − U(R, t)

}
dt (2)

and (atomic units � = e = me = 1/4πε0 = 1 are used)

Aq =

t1∫

t0

〈
Ψ

∣∣∣∣i ∂

∂t
− Ĥ(R, t)

∣∣∣∣Ψ
〉

dt (3)

with MA the mass of the classical particles and
the brackets 〈. . . 〉 denote integration over all coordi-
nates r1, . . . , rNe . The equations of motion for the tra-
jectories R and the many body state |Ψ〉 are obtained by
making the total action stationary, leading to

δA

δ〈Ψ(t)| = 0 ⇒ i
∂

∂t
|Ψ〉 = Ĥ(R, t) |Ψ〉 (4)

δA

δRA(t)
= 0 ⇒ MAR̈A = − ∂

∂RA
U(R, t)

−
〈

Ψ

∣∣∣∣ ∂

∂RA
Ĥ(R, t)

∣∣∣∣Ψ
〉

(5)

A = 1, . . . , Ni.

Equations (4, 5) have to be solved simultaneously. They
represent the general equations of motion of the mixed
classical-quantum system defined above. Classical mo-
tion R(t) and quantum dynamics |Ψ(t)〉 are coupled self-
consistently owing to the action principle.

In the next section, the potential U and the Hamilto-
nian Ĥ will be specified for an atomic many body system,
we are interested in.

2.2 Atomic many body system

Considering now Ni ions (nuclei) with charge ZA (A =
1, . . . , Ni) and Ne electrons exposed to an external laser
potential (usually, but not necessarily, described in dipole
approximation VL(x, t) = −x ·E(t), with E(t) the electric
field strength) the potential energy of the nuclei reads

U(R, t) =
Ni∑

A<B

ZAZB

|RA − RB| −
Ni∑

A=1

ZAVL(RA, t) (6)

and the Hamiltonian becomes

Ĥ(R, t) =
Ne∑
i=1

t̂i +
Ne∑
i=1

V (ri,R, t) +
Ne∑
i<j

1
|ri − rj | (7)
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with the single particle kinetic energy operator t̂ = −∆/2.
The external single particle potential V (r,R, t) contains
the laser field VL(r, t) and the electron-ion interaction
Vint(r,R)

V (r,R, t) = Vint(r,R) + VL(r, t) (8a)

= −
Ni∑

A=1

ZA

|RA − r| + VL(r, t). (8b)

The first term in (8) is time dependent via R(t) and the
second one explicitly depends on time. Using the definition
of the single particle density

ρ(r, t) = Ne

∫
d3r2 . . . d3rNiΨ

∗(r, r2, . . . , rNe , t)

× Ψ(r, r2, . . . , rNe , t) (9)

it becomes apparent that the general Newton-type equa-
tion (5) drastically simplifies with equations (7–9) lead-
ing to

MAR̈A = −∂U(R, t)
∂RA

−
∫

d3rρ(r, t)
∂Vint(r,R)

∂RA

A = 1, . . . , Ni. (10)

Thus, the electronic forces acting on the nuclei are deter-
mined by the single particle density ρ(r, t) alone, which is
the key quantity in DFT. So, in the next section we will
reformulate the whole problem using TD-DFT to describe
the electronic system.

2.3 TD-DFT coupled with MD

According to the basic theorems of TD-DFT [35] any ob-
servable of a many body system can be expressed as func-
tional of the single particle density (9) and this density
can be obtained from a non-interacting reference system
according to the ansatz

ρ(r, t) =
Ne∑
j=1

Ψ j∗(r, t)Ψ j(r, t) (11)

with Ψ j(r, t) the time dependent Kohn-Sham-functions.
The quantum mechanical part of the action (1) now reads

Aq =

t1∫

t0

Ne∑
j=1

〈
Ψ j

∣∣∣∣i ∂

∂t
− t̂

∣∣∣∣Ψ j

〉
dt − Apot (12)

where the brackets 〈. . . 〉 ≡ ∫
V

d3r denote integration over
the single particle coordinate. The potential part in (12)

Apot =

t1∫

t0

∫
ρ(r, t)

(
V (r,R, t)

+
1
2

∫
ρ(r′, t)
|r − r′|d

3r′
)

d3r dt + Axc[ρ] (13)

is a functional of the density ρ(r, t) and contains the
exchange-correlation contribution Axc. In concrete appli-
cations of TD-DFT, the latter is subject of adequate
approximations, like the time dependent local density ap-
proximation (TD-LDA) or the time dependent optimized
potential method [36]. In this paper we will not specify Axc

and, thus, are dealing with general equations of motion.
In this sense, variation of equations (12, 13) with re-

spect to the KS-orbitals leads to

δA

δΨ j∗(r, t)
= 0 ⇒ i

∂

∂t
Ψ j = (t̂ + Veff(r,R, t))Ψ j ,

j = 1, . . . , Ne (14)

whereas, variation of equations (2, 12, 13) with respect to
the trajectories gives

δA

δRA(t)
= 0 ⇒ MAR̈A = − ∂

∂RA
U(R, t)

−
Ne∑
j=1

〈
Ψ j

∣∣∣∣ ∂

∂RA
Vint(r,R)

∣∣∣∣Ψ j

〉

A = 1, . . . , Ni. (15)

In (14), the effective single particle potential Veff(r,R, t)
is defined as

Veff(r,R, t) =
δApot[ρ]
δρ(r, t)

= V (r,R, t) +
∫

ρ(r′, t)
|r − r′|d

3r′ +
δAxc[ρ]
δρ(r, t)

·
(16)

In (15), the interaction potential Vint(r,R), as part of
V (r,R, t), is defined according to (8).

The resulting equations of motion (14, 15) are com-
pletely equivalent to (4, 5) and accordingly to (10). So,
with the help of (11) one immediately realizes that (15)
is identical to (10). The many body Schrödinger equa-
tion (4), however, is now replaced by a set of Ne coupled
integro-differential single particle KS-equations (14). In
the present form, these equations have to be solved nu-
merically on a grid, which still is very demanding (if not
impossible, at present, for large systems in intense laser
fields; see also discussion in the next section). A drastic
simplification can be achieved, if the (3+1)-dimensional
KS-orbitals Ψ j(r, t) are represented in a finite basis set.
This, however, complicates the classical equations of mo-
tion (15) considerably as will be discussed in the next
section.

2.4 TD-DFT in basis set expansion coupled with MD

In this section, we derive the equations of motion of the
actual general NA-QMD formalism which is based on a
finite basis set expansion of the KS-orbitals. We discuss in
detail their properties, in particular that of the resulting
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force corrections. It will be shown, that these force correc-
tions can be interpreted as “constrained quantum forces”
known from ordinary classical mechanics for systems with
boundary conditions.

The central starting point is to expand the time de-
pendent KS-orbitals Ψ j(r, t) in a local basis {φα}

Ψ j(r, t) =
∑

α

aj
α(t)φα(r − RAα) (17)

with the expansion coefficients aj
α(t) and the symbol Aα

denotes the atom to which the atomic orbital φα is at-
tached.

Although technical details are not the topic of this pa-
per, we note in passing, that the use of the linear combi-
nation of atomic orbitals (LCAO-ansatz (17)) has clear
advantages as compared to a direct numerical solution
of the Kohn-Sham-equations (14). First of all (and ob-
viously), the (3+1)-dimensional problem (14)) will be re-
duced to a one-dimensional one for the determination of
the coefficients aj

α(t). Second (and especially important,
if intense laser fields are considered), electrons with ba-
sically different spatial extensions (strongly bound core
electrons, binding valence electrons as well as practically
free electrons in the continuum) can be naturally included
in the dynamical treatment, provided appropriate basis
functions φα are taken into account [37].

With the ansatz (17) the explicit expression of the den-
sity is given by

ρ(r, t) =
Ne∑
j=1

∑
αβ

aj∗
α (t)aj

β(t)φ∗
α(r − RAα)φβ(r − RAβ

).

(18)
Owing to the implicit time-dependence of the basis φα(r−
RAα), the partial time derivative ∂/∂t in the action (12)
has to be replaced by

∂

∂t
⇒ d

dt
=

∂

∂t
+

Ni∑
A=1

ṘA
∂

∂RA
· (19)

For the following considerations it is convenient to intro-
duce the following matrices:

the kinetic energy matrix

Tαβ :=
〈
φα

∣∣t̂∣∣φβ

〉
, (20)

the Hamilton matrix

Hαβ :=
〈
φα

∣∣t̂ + Veff

∣∣φβ

〉
(21)

containing the effective potential Veff defined in (16), the
overlap matrix

Sαβ := 〈φα |φβ 〉 , (22)

the non-adiabatic coupling matrix

Bαβ :=
〈

φα

∣∣∣∣ d
dt

φβ

〉
(23)

which due to (19) contains the vector matrices

BA
αβ :=

〈
φα

∣∣∣∣ ∂

∂RA
φβ

〉
, (24)

and finally, the double differential matrices

CA
αβ :=

〈
d
dt

φα

∣∣∣∣ ∂

∂RA
φβ

〉
· (25)

In addition, we define the transposed matrices

B+
αβ :=

〈
d
dt

φα

∣∣∣∣φβ

〉
= B∗

βα (26)

BA+
αβ :=

〈
∂

∂RA
φα

∣∣∣∣φβ

〉
= BA∗

βα (27)

CA+
αβ :=

〈
∂

∂RA
φα

∣∣∣∣ d
dt

φβ

〉
= CA∗

βα. (28)

With these definitions and the ansatz (17) the quantum
mechanical action (12) can be written as

Aq =

t1∫

t0

Fq(t)dt − Apot (29)

with

Fq(t) =
Ne∑
j=1

∑
αβ

aj∗
α

[
(iBαβ − Tαβ)aj

β + iSαβ ȧj
β

]
. (30)

The final equations of motion are now obtained by inde-
pendent variation of the total action with respect to aj

α(t)
and RA(t). With

δA

δaj∗
α (t)

=
∂Fq

∂aj∗
α

−
∫

d3r
∂ρ

∂aj∗
α

δApot

δρ(r, t)
= 0 (31)

this yields the Kohn-Sham-equations in basis representa-
tion

ȧj
α = −

∑
βγ

S−1
αβ (iHβγ + Bβγ) aj

γ j = 1, . . . , Ne (32)

and using Euler’s equations

δA

δRA(t)
=

∂Fq

∂RA
− d

dt

∂Fq

∂ṘA

− δApot

δRA(t)
+

δAc

δRA(t)
= 0 (33)

one obtains after some algebra the classical equations of
motion

MAR̈A = −∂U(R, t)
∂RA

+
Ne∑
j=1

∑
αβ

aj∗
α

(
−∂Hαβ

∂RA
+ DA

αβ

)
aj

β

A = 1, . . . , Ni (34)
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with the matrix

DA
αβ =

〈
φα

∣∣∣∣ ∂

∂RA
(Veff − V )

∣∣∣∣φβ

〉

+
∑
γδ

(
BA+

αγ S−1
γδ Hδβ + HαγS−1

γδ BA
δβ

)

+ i


CA+

αβ − CA
αβ +

∑
γδ

(
B+

αγS−1
γδ BA

δβ − BA+
αγ S−1

γδ Bδβ

) .

(35)

Equations (32, 34) represent the central result in the
derivation of the general formalism of the NA-QMD.

Owing to the definition of Bαβ (23) and CA
αβ (25)

the last term of (35) depends on the nuclear velocities.
These contributions to the forces are essential for the cor-
rect momentum balance in the present basis set formal-
ism (see Sect. 2.7). It is interesting to note that similar
velocity dependent forces have been found recently also in
a time-dependent tight binding approach [38]. Obviously,
this term vanishes if the basis is complete, i.e. if

∑
αβ

|φα〉S−1
αβ 〈φβ | = 1 (36)

holds. It will be shown below, that in this case also the re-
maining terms of the electronic contribution to the forces
in equations (34, 35) are drastically simplified. In any
practical applications of the formalism, however, the com-
pleteness relation (36) can never be fulfilled, and thus, the
full equations of motion (34) have to be considered.

2.5 Interpretation of the force corrections due
to the finite basis set expansion

At first glance, the complicated structure of the forces in
equations (34, 35) makes it difficult to give a transparent
interpretation of the correction term resulting from the
basis. From the theoretical point of view it is therefore
very useful to present equations (34, 35) in an alternative
(operator) form and rederive the KS-equations (32) from
a basis constrained single particle Hamiltonian defined as

ĥ′ = t̂ + Veff + X̂ (37)

with ĥ = t̂ + Veff the usual KS-Hamiltonian from equa-
tions (14, 16) and the additional operator

X̂ := P̂ ĥP̂ − ĥ + i
(
1 − P̂

)
B̂ − iB̂+

(
1 − P̂

)
(38)

defined with the projectors

P̂ :=
∑
αβ

|φα〉S−1
αβ 〈φβ | (39)

and

B̂ :=
∑
αβ

∣∣∣∣ d
dt

φα

〉
S−1

αβ 〈φβ | . (40)

Obviously X̂ vanishes for a complete basis (36).
With equations (38–40) the classical equations of mo-

tion (34) can now be rewritten as

MAR̈A = −∂U(R, t)
∂RA

−
Ne∑
j=1

∑
αβ

aj∗
α

〈
φα

∣∣∣∣ ∂

∂RA
Vint(r,R) +

∂

∂RA
X̂

∣∣∣∣φβ

〉
aj

β

(41)

leading finally, with (17), to

MAR̈A = −∂U(R, t)
∂RA

−
∑

j

〈
Ψ j

∣∣∣∣ ∂

∂RA
Vint(r,R) +

∂

∂RA
X̂

∣∣∣∣Ψ j

〉
· (42)

In addition, the equations of motion (32) are equivalent
to the standard form of the time-dependent KS-equations

i
∂

∂t
Ψ j = (t̂ + Veff(r,R, t) + X̂)Ψ j (43)

however, with the additional single particle opera-
tor X̂ (38). This can easily be seen by inserting the
ansatz (17) into (43) which leads to

∑
α


ȧj

α +
∑
βγ

S−1
αβ (iHβγ + Bβγ)aj

γ


φα = 0 (44)

and, therefore, finally to (32) because the basis {φα} must
be linearly independent.

The implicit equations of motion (42, 43) are thus
completely equivalent to the explicit expressions (32, 34),
used in practical calculations. They allow however a more
transparent interpretation of the present theory: the use
of a finite basis expansion has the same effect as the
introduction of an additional operator in the Hamilto-
nian. This is similar to the introduction of constraining
forces in classical mechanics, if the dynamics is investi-
gated under boundary conditions. Further, one can now
explicitly see that the “coupled channel” equations (32)
and the “constrained” forces (34, 35) reduce to the stan-
dard KS-equations (14) and Newton-equations (15), re-
spectively (10), if the basis is complete.

2.6 Energy balance

In order to derive the energy balance we define an
exchange-correlation energy according to

Axc[ρ] =

t1∫

t0

Exc[ρ](t)dt (45)

with the important property

δAxc[ρ]
δρ(r, t)

=
δExc[ρ](t)

δρ(r)
· (46)
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Note the different arguments in δρ on the left and right
hand side of (46). With this, the potential energy of the
quantum system can be written as

Epot(t) =
∫

ρ(r, t) (V (r,R, t)

+
1
2

∫
ρ(r′, t)
|r − r′|d

3r′
)

d3r + Exc[ρ](t). (47)

The total time derivative of this functional is given by

d
dt

Epot(t) =
∫

d3r
d
dt

ρ(r, t)Veff(r,R, t)

+
∫

d3r ρ(r, t)
d
dt

V (r,R, t) (48)

with

d
dt

ρ(r, t) =
∂

∂t
ρ(r, t) +

Ni∑
A=1

ṘA
∂

∂RA
ρ(r, t) (49)

and

d
dt

V (r,R, t) =
∂VL(r, t)

∂t
+

Ni∑
A=1

ṘA
∂

∂RA
Vint(r,R). (50)

Now, the total energy of the system can be defined

E(t) =
Ni∑

A=1

MA

2
Ṙ2

A + U(R, t)

+
Ne∑
j=1

∑
αβ

aj∗
α Tαβaj

β + Epot[ρ](t). (51)

The total time derivative of this quantity is obtained af-
ter a longer calculation using equations (48–50) and the
equations of motion (32) as

dE

dt
=
∫

ρ(r, t)
∂VL(r, t)

∂t
d3r −

Ni∑
A=1

ZA
∂VL(RA, t)

∂t
· (52)

As expected, this quantity is conserved for vanishing or
time-independent external fields.

A more transparent expression for the energy balance
can be obtained in dipole approximation (i.e. VL(x, t) =
−x · E(t)) leading to

d
dt

E = −de(t)Ė(t) + di(t)Ė(t) (53)

with the dipole moments of the electrons

de(t) =
∫

ρ(r, t)r d3r (54)

and the ions

di(t) =
Ni∑

A=1

ZARA(t). (55)

From this expression it is clearly seen, that in a homonu-
clear system (ZA = Z = const.) the ions will not be ex-
cited by the laser, because in the center of mass system
the nuclear dipole moment vanishes, i.e.

di = Z

Ni∑
A=1

RA = 0. (56)

In order to obtain more insight into the electronic exci-
tation (deexcitation) process, it is convenient to consider
the total energy change

∆Eel = −
∫ ∞

−∞
de(t)Ė(t) dt (57)

together with the Fourier-transformed dipole moment

de(ω) =
1
2π

∫ ∞

−∞
e−iωtde(t) dt. (58)

One now immediately realizes that in a continuous wave
field

E = � (E0 e−iωLt
)

(59)

the electronic system adsorbs (desorbs) energy only if the
imaginary part of de(ω) does not vanish at the laser fre-
quency ω = ωL, i.e.

∆Eel = ωL �(de(ωL) ·E0). (60)

In the linear response region this is the case only if ωL

coincides with the excitation energy of an optical excited
state.

In the other extreme case of very short laser pulses

E = E0 δ(t) (61)

all frequencies do contribute simultaneously to the excita-
tion (deexcitation) process, i.e.

∆Eel =
∫

dω ω �(de(ω) · E0). (62)

For finite laser pulses, the total electronic energy change
can be obtained by solving (57) numerically, together with
the full equations of motion (32, 34) to calculate the dipole
moment de(t).

We note also, that the present formalism can be favor-
ably used to calculate optically excited states (i.e. Born-
Oppenheimer surfaces) as well as optical excitation spec-
tra in the linear response region from (58) by solving the
KS-equations (32) for fixed nuclear position R and “nu-
merically short” δ-pulses (61).

2.7 Momentum balance

In order to investigate the momentum balance we start
with the total momentum

P = Pc + Pq (63)
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as the sum of the classical part

Pc =
Ni∑

A=1

MAṘA (64)

and the quantum-mechanical part

Pq =
Ne∑
j=1

〈
Ψ j |−i∇|Ψ j

〉
= −i

Ne∑
j=1

∑
αβ

aj∗
α aj

β 〈φα |∇|φβ〉 ·

(65)
Using the identity

∂

∂r
φα(r − RAα) = − ∂

∂RAα

φα(r − RAα)

≡ −
Ni∑

A=1

∂

∂RA
φα(r − RAα) (66)

the latter one can be transformed into

Pq = i
Ne∑
j=1

∑
αβ

aj∗
α

∑
A

BA
αβaj

β . (67)

Now, the total derivative with respect to time can be ob-
tained using equations (32, 34) leading after an extensive
calculation to

d
dt

P = −
∫

ρ(r, t)∇(VL(r, t) + Vxc(r, t))d3r

+
∑
A

ZA∇VL(RA, t). (68)

Besides the expected dependence on the laser field, this
balance contains a term that depends on the exchange-
correlation potential Vxc ≡ δAxc/δρ(r, t). This one van-
ishes for the exact Vxc, which is a general property of
TD-DFT [39]. Without this term one also immediately re-
alizes, that in dipole approximation the total momentum
balance vanishes for neutral systems, i.e.

d
dt

P =

(
−
∫

ρ(r, t)d3r +
Ni∑

A=1

ZA

)
E(t) = 0 (69)

which is due to the classical, not quantized treatment of
the laser field.

We note finally that the momentum balance (68) can
be derived also (and much simpler) without basis expan-
sion. The derivation, carried out here, therefore proofs
nicely the validity and stresses the importance of the fi-
nite basis correction terms in the forces (34, 35) following
from the variational principle.

3 Case study H+
2

As a first application we will consider here the simplest
possible case: the interaction of a laser with the H+

2 -
molecule, which is aligned along the laser polarization
axis ez.

For this one electron system the Coulomb potential
and the exchange-correlation potential in (16) compensate
each other and, thus the effective potential for the electron
consists of the external potential ( 8b) only, i.e.

Veff ≡ V (r,R, t) = − 1
|R1 − r| −

1
|R2 − r| +VL(r, t). (70)

This simplifies the solution of the quantum mechanical
problem (32) drastically. In addition, due to the alignment
of the molecule with respect to ez, the classical equations
of motion (34) reduce to a one dimensional problem by
introducing the relative coordinate R = |R1 − R2|, i.e.
R1 = (R/2)ez and R2 = −(R/2)ez. Therefore, and to-
gether with (70), the first and the third term in (35) van-
ish, which simplifies the treatment of the classical prob-
lem (34), too. Next, for the basis expansion (17) we use a
linear combination of atomic orbitals (LCAO) consisting
of the 1s and 2s eigenstates of the H-atom, centered at
each nucleus, i.e.

φ1,2(r) =
1√
π

e−|r−R1,2|

φ3,4(r) =
1

2
√

2π

(
1 − |r − R1,2|

2

)
e−|r−R1,2|.

(71)

This allows us to calculate all matrix elements analytically.
Finally, in order to compare the results with that obtained
from full quantum mechanical calculations [12], the nuclei
are assumed to be in their sixth vibronically excited state
(see below) and the laser field is chosen to be identical
that of [12], i.e.

VL(r, t) = E0(t) z cos(ωt)

with the envelop

E0(t) =




0 if t < 0,

Emax(t/t0) if 0 ≤ t < t0,

Emax if t0 ≤ t,

the frequency ω = 5.7 eV, the ramp time t0 = 1 fs and the
field strength Emax = 0.032 a.u., which corresponds to an
intensity of 3.5 × 1013 W/cm2.

At this relatively low intensity, the dissociation chan-
nel is known to be dominating against ionization [12]. We
stress at this point, that ionization can generally not be
described within the LCAO basis (71). However, it will
be shown elsewhere [37], that a realistic description of
the electronic continuum (ionization) dynamics in opti-
cal laser pulses can be achieved by joining a LCAO-basis
together with corresponding continuum wave functions.

In Figure 1, the lowest three energy surfaces (electronic
energy plus proton repulsion 1/R) calculated within the
basis (71) are shown. In addition, the ground state en-
ergy surface shifted by one and twice the photon energy
ω = 5.7 eV are plotted. A one- and a two-photon resonant
transition to the first and the second excited state exist at
distances of R = 2.9 a.u. and R = 6 a.u., respectively. The
energy of the sixth vibronically excited state (calculated
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Fig. 1. Calculated energy levels for H+
2 . Shown are the ground

state (straight line) and the first two excited states (dotted
lines). The thin lines denote the ground state shifted by once
and twice the photon energy. The resonant transitions at R =
2.9 a.u. and R = 6 a.u. are indicated by arrows.
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Fig. 2. Calculated trajectories obtained by using different
initial conditions: direct fragmentation (solid lines), delayed
fragmentation (dashed lines) and stable trajectories (dotted
lines).

with the Bohr-Sommerfeld quantization method) is shown
also. This energy determines the range of the nuclear ini-
tial conditions, i.e. 1.6 a.u. � R � 4.6 a.u. for the clas-
sical equations of motion. These distances together with
the corresponding initial velocities are chosen according
to the classical probability distribution.

A very transparent and detailed physical picture from
the occurring mechanisms, however, can be obtained al-
ready by discussing a few selected trajectories. In Figure 2,
the nuclear distance R(t) as function of time is shown
for typical trajectories. As can be clearly seen, in strong
dependence on the nuclear initial conditions R(0), three
different types of trajectories occur:

(i) direct fragmentation below the resonant region R �
2.9 a.u. independent on the sign of Ṙ (upper bunch
of trajectories shown in Fig. 2),

(ii) delayed fragmentation for intermediate distances
around R � 3 a.u. (middle bunch of trajectories in
Fig. 2) and,

(iii) stable trajectories for the largest possible distances
at R � 4.6 a.u. (bunch of oscillating trajectories in
Fig. 2).
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Fig. 3. Trajectories R(t) and absorbed energy E(t) as func-
tion of time for the three types of trajectories: direct fragmen-
tation (solid lines), delayed fragmentation (dashed lines) and
stabilization (dotted lines).

In a quantum mechanical language, these three types
of trajectories characterize the evolution of different spa-
tial parts of an initially excited vibrational wave packet
of the molecule. The origin of this behavior can be under-
stood by the present mixed classical-quantum approach.
In Figure 3, for the three prototypes of trajectories the dis-
tance R(t) as well as the absorbed energy E(t) as function
of time are shown. Both quantities should be discussed
together with the energy surfaces and resonant transition
regions shown in Figure 1. Direct fragmentation for initial
distances below the resonant transition (R < 2.9 a.u.) oc-
curs due to the immediate excitation when the molecule
approaches R ≈ 2.9 a.u. and, due to the further expan-
sion, it absorbs energy again at the second resonant region
at R ≈ 6 a.u. (solid lines in Fig. 3). Delayed fragmenta-
tion for initial distances slightly above R ≈ 2.9 a.u. oc-
curs due to much less absorption of energy during the ini-
tial evolution, which, however, is large enough to expand
the molecule up to distances around R ≈ 6 a.u. where
most of the energy is being absorbed, leading finally to
fragmentation (dashed lines in Fig. 3). Stable trajecto-
ries, originating from the largest initial distances around
R � 4.6 a.u., do absorb a remarkable amount of energy
only if the distance R(t) approaches the resonant region
at R ≈ 2.9 a.u., followed however by a direct deexcita-
tion. Such a behavior, called molecular stabilization, is a
theoretically well known mechanism and has been inves-
tigated using dressed states ([40] and references therein).
Note, that in the present case the molecule can accumu-
late excitation energy, and, thus, in a cw-laser, one may
expect finally fragmentation, too.

It is now of particular interest, how the results of this
extremely simplified approach do compare with the exact,
full quantum-mechanical ones, which are available for this
system [12]. To this end, we have performed an ensemble
average of about 1200 trajectories with different classical
initial conditions. The probability distribution of the nu-
clear distances is obtained then by

P (R, t) =
1
N

N∑
i=1

P i(R, t) (72)
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Fig. 4. Probability distribution P (R, t) for the nuclear dis-
tance R at t = 17.6 fs. The quantum mechanical result [12] and
the present classical-quantum result (solid line) are shown.

where N is the total number of trajectories and P i(R, t) =
1/∆R if the distance Ri(t) for the event i lies within the
range R(t)−∆R/2 ≤ Ri(t) < R(t)+∆R/2 with the spatial
bin distance ∆R = 0.1 a.u. and P i(R, t) = 0 otherwise.
This quantity is being compared to the exact quantum
mechanical probability distribution at t = 17.6 fs in Fig-
ure 4. Qualitatively both results are similar and show the
expected features, molecular stabilization for small dis-
tances (R � 5 a.u.) and fragmentation for large values
of R. Quantitatively, however, one can see expected dif-
ferences, e.g. the classical turning points in bound state
region are somewhat more extended as compared to the
real quantum state. Integral quantities, however, like the
total dissociation probability, defined as

PD(t) =
∫ ∞

R0

P (R, t) dR

with R0 = 9.5 a.u. [12] are in satisfactory good agreement
as shown in Figure 5.

4 summary and outlook

We have derived in a systematic way a general formalism
of the NA-QMD which applies for finite atomic many-
body systems in external fields. It is based on a mixed
classical-quantum approach where the electronic system
is described by TD-DFT in local basis expansion and the
nuclear degrees of freedom are treated classically by molec-
ular dynamics. Self-consistent equations of motion are de-
rived from a general action principle.

We have presented here the general equations of mo-
tion. They have been solved without any further approx-
imations for the one electron system H+

2 . The obtained
results are in good agreement with that of full quantum
mechanical calculations. For many-electron systems, ap-
proximate equations of motion, as derived e.g. in [27] on
a tight-binding level, can be obtained from the general
formalism as well. We intend however, to realize the nu-
merical implementation of the whole formalism also on the
ab initio level using the time-dependent optimized poten-
tial method [36] for the exchange correlation part in the
action (13).
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Fig. 5. Dissociation probabilities PD(t) as function of time.
The quantum mechanical result [12] and the present classical-
quantum result (solid line) are shown.

A very interesting and fascinating field of applica-
tion concerns the excitation, ionization and fragmentation
mechanism of atomic clusters in intense laser fields [2–8].
Here an all electron treatment together with an appro-
priate description of the continuum in the ansatz (17) is
required which, as discussed in the text, can be incorpo-
rated in the present formalism [37].

This work was supported by the DFG through the Schwer-
punkt “Zeitabhängige Phänomene und Methoden in Quan-
tensystemen der Physik und Chemie” and Forschergruppe
“Nanostrukturierte Funktionselemente in makroskopischen
Systemen”.
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